ONE-STEP SYNTHESIS OF 2-ARYLETHENYL METHYL SULFIDES FROM ARYL ALDEHYDES AND DIMETHYL SULFOXIDE

Takakazu KOJIMA and Tamotsu FUJISAWA Sagami Chemical Research Center, Nishi-Ohnuma, Sagamihara, Kanagawa 229

A facile method for preparing $trans-\alpha,\beta$ -unsaturated sulfides has been established by the reaction of aryl aldehydes with dimethyl sulfoxide in the presence of matallic sodium. The reaction proceeds through the selective reduction of an intermediate, 2-arylethenyl methyl sulfoxide, which also gives enol ethers by the reaction with sodium alkoxides.

 α,β -Unsaturated sulfides are of value as precursors of aldehydes $^1)$ and ketones, $^2)$ and the sulfonium salts derived from them are recently reported to form cyclopropanes and oxiranes. $^3)$ Although unsaturated sulfides have been prepared from alkynes and thiols, $^4)$ or aldehydes by Horner-Wittig reaction, $^5)$ we have found a one-step synthesis of 2-arylethenyl methyl sulfides starting from aryl aldehydes and dimethyl sulfoxide (DMSO) in the presence of metallic sodium, as shown in the following scheme:

ArCHO

Na

Ar

$$CH=CH$$
 SCH_3

1

80°C, 6h

2

A typical procedure for the preparation of the sulfide $(\underline{2})$ is as follows. Benzaldehyde $(\underline{1a}, 2 \text{ mmol})$ in DMSO (40 ml) and tetrahydrofuran (10 ml) was stirred with sodium (8.6 mg-atom) under an atmosphere of argon at 80°C for 6 h. Addition of water was followed by extraction with ether. The organic layer was concentrated under reduced pressure and subjected to a column chromatographic purification using silica gel with n-hexane-benzene (5:1) as an eluant. 2-(Methylthio) ethenylbenzene $(\underline{2a})$ was isolated as colorless liquid in a yield of 84%. In the similar precedure, various kinds of the sulfides $(\underline{2b-2f})$ were obtained in good yields as shown in Table 1. The yield of $\underline{2}$ depends on the concentration of the starting aldehyde $\underline{1}$. The yield of $\underline{2b}$ increased up to 84% in two-fold diluted conditions, while it decreased to 30% in six-fold concentrated ones.

The structure of the products was confirmed by spectroscopic data (UV, IR, NMR, and MS) and elemental analysis. Although Horner-Wittig reaction was reported to give a cis-trans mixture of unsaturated sulfides, ⁵⁾ all of the sulfides obtained here have trans (E) configuration as to the carbon-carbon double bond. ⁶⁾ No cis isomer was observed in the reaction mixture (NMR). Consequently, the

Compd	Ar	Isolated Yield of 2^{a}	Mp (bp)	
<u> 2a</u>	С _б н ₅	84%	(140-142°C/35mmHg) ^{b)}	
<u>2b</u>	p-CH ₃ C ₆ H ₄	76	35-37°C	
<u>2c</u>	p-CH ₃ OC ₆ H ₄	64	72-73 ^{c)}	
<u>2d</u>	o-CH ₃ OC ₆ H ₄	73	(88-90/1)	
<u>2e</u>	2-furyl	66	oil ^{d)}	
<u>2f</u>	l-naphthyl	75	(102-104/1)	

Table 1. Yields and Physical Properties of 2-Arylethenyl Methyl Sulfides (2)

- a) Based on aldehyde ($\frac{1}{2}$). b) Lit. 72-76°C/0.5-1.0mmHg.⁴) c) Lit. 70-71.5°C.⁴)
- d) Diels-Alder reaction with dimethyl acetylenedicarboxylate yielded dimethyl 6-(2-methylthio)ethenyl-3-hydroxyphthalate, which was identified as its 3,5-dinitrobenzoate; mp 171-172°C.

reaction proceeds stereoselectively to the exclusive formation of the trans isomer. The formation of $\underline{2}$ may be rationalized according to the following scheme [II] via the intermediate 2-arylethenyl methyl sulfoxide $(\underline{4})$. The unsaturated sulfoxide $(\underline{4})$ formed from $\underline{1}$ and methylsulfinyl carbanion is reduced

Archo
$$\xrightarrow{\overline{CH}_2 \text{SOCH}_3} \xrightarrow{-\text{OH}^-}$$
 Arch=Chsoch₃ \xrightarrow{Na} Arch=Chsch₃ $\xrightarrow{\underline{I}}$ $\xrightarrow{\underline{I}}$ $\xrightarrow{\underline{Arch}=\text{Choch}_3}$ $\xrightarrow{\underline{Arch}=\text{Choch}_3}$ $\xrightarrow{\underline{Arch}=\text{Choch}_3}$ $\xrightarrow{\underline{I}}$ $\xrightarrow{\underline{DMSO}}$ $\xrightarrow{\underline{Arch}=\text{Choch}_3}$

chemoselectively to form $\underline{2}$, leaving the carbon-carbon double bond intact. Matallic sodium serves first to form methylsulfinyl carbanion and secondly to reduce $\underline{4}$. The reduction of $\underline{4}$ was confirmed by an independent experiment which actually brought $\underline{4}$ (Ar=Ph) to $\underline{2a}$ in DMSO-sodium system (66%). A related compound, α,β -unsaturated ether ($\underline{5}$), was also obtained from $\underline{4}$ by apparent substitution of methylsulfinyl group; p-[2-(Methylsulfinyl)ethenyl]toluene ($\underline{4}$, Ar= p-Tol) afforded p-[2-(methoxy)ethenyl]toluene ($\underline{5}$, Ar= p-Tol) in 60% yield, when treated with sodium methoxide in DMSO at 80°C for 6 h.

REFERENCES AND NOTE

- 1) E. J. Corey and J. I. Shulman, J. Org. Chem., 35, 777 (1970).
- 2) A. J. Mura, Jr., G. Majetich, P. A. Grieco, and T. Cohen, Tetrahedron Lett., 4437 (1975).
- 3) K. Takaki and T. Agawa, J. Org. Chem., 42, 3303 (1977), and references therein
- 4) M. C. Caserio, R. E. Pratt, and R. J. Holland, J. Am. Chem. Soc., <u>88</u>, 5747 (1966).
- 5) I. Shahak and J. Almog, Synthesis, 170 (1969).
- 6) The ethylenic protons of these sulfides have a coupling constant of 16 Hz, which is in accord with that of methyl styryl sulfide (2a) of trans structure. 4)
- 7) G. A. Russel and H.-D. Becker, J. Am. Chem. Soc., 85, 3406 (1963).